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Abstract 

The once remote and inaccessible forests of Guatemala’s Maya Biosphere Reserve (MBR) have 
recently experienced high rates of deforestation corresponding to human migration and expansion of 
the agricultural frontier. Given the importance of land cover and land use change data in conservation 
planning, accurate and efficient techniques to detect forest change from multi-temporal satellite 
imagery were desired for implementation by local conservation organizations. Three dates of Landsat 
Thematic Mapper, each acquired two years apart, were radiometrically normalized and pre-processed 
to remove clouds, water, and wetlands, prior to employing the change detection algorithm. Three 
change detection methods were evaluated: normalized difference vegetation index (NDVI) image 
differencing, principal component analysis, and RGB-NDVI change detection. A technique to generate 
reference points, by visual interpretation of color composite Landsat images, for Kappa-optimizing 
thresholding and accuracy assessment, was employed. The highest overall accuracy was achieved with 
the RGB-NDVI method (85%). This method was also preferred for its simplicity in design and ease in 
interpretation, which were important considerations for transferring remote sensing technology to local 
and international non-governmental organizations. 
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Introduction 

With rapid changes in land cover occurring over large areas, remote sensing technology is an 
essential tool in monitoring tropical forest conditions. The remote and inaccessible nature of many 
tropical forest regions limits the feasibility of ground-based inventory and monitoring methods for 
extensive land areas. Initiatives to monitor land cover and land use change are increasingly reliant on 
information derived from remotely sensed data. Such information provides the data link to other 
techniques designed to understand the human processes behind deforestation (Lambin, 1994; Rindfuss 
and Stern, 1998).  

An array of techniques are available to detect land cover changes from multi-temporal remote 
sensing data sets (Jensen, 1996; Coppin and Bauer, 1996). The goal of change detection is to discern 
those areas on digital images that depict change features of interest (e.g. forest clearing or land cover / 
land use change) between two or more image dates. One method, image differencing, is simply the 
subtraction of the pixel digital values of an image recorded at one date from the corresponding pixel 
values of the second date. The histogram of the resulting image depicts a range of pixel values from 
negative to positive numbers, where those clustered around zero represent no change and those at 
either tail represent reflectance changes from one image date to the next (Jensen, 1996). This method 
has been documented widely in change detection research (Singh, 1986; Muchoney and Haack, 1994; 
Green et al., 1994; Coppin and Bauer, 1996; Macleod and Congalton, 1998). Some investigators favor 
this method for its accuracy, simplicity in computation, and ease in interpretation.  

One difficulty encountered in employing image differencing for change detection is the 
selection of the appropriate threshold values in the histogram that separates real and spurious change. 
The subjectivity of threshold placement may be improved by the analyst’s familiarity with the study 
area as well as access to ancillary data such as field information, GIS data, and/or matching dates of 
aerial photography. Fung and LeDrew (1988) tested quantitative methods for developing these 
threshold levels using accuracy indices. They recommended the Kappa coefficient of agreement in 
determining an optimal threshold level, being based on an error matrix of image data against known 
reference data.  

Image differencing, although mathematically simple, allows for only one band of information 
to be processed at a time. Other techniques incorporate multiple bands of data for change detection. 
Several studies have demonstrated the utility of the principal component analysis (PCA) technique in 
multi-temporal image analysis (Byrne et al., 1980; Fung and LeDrew, 1988; Muchoney and Haack, 
1994; Coppin and Bauer, 1996; Macleod and Congalton, 1998). The results of using the PCA 
transform on two dates of imagery are contrary to that of its typical, one-date transformations. In multi-
temporal analysis, the first two components tend to represent variation associated with unchanged land 
cover and overall image noise (i.e. atmospheric and seasonal variation), while the third and later 
components are of more interest in identifying change areas (Byrne et al., 1980). Previous studies have 
confirmed that the minor components have been successful in detecting land cover changes (Byrne et 
al., 1980; Fung and LeDrew, 1987) when the areas affected by change of interest occupy a small 
proportion of the study area (Fung and LeDrew, 1987; Macleod and Congalton, 1998).  

Image differencing using band ratios or vegetation indices is another technique commonly 
employed for land cover change detection. For example, the normalized difference vegetation index 
(NDVI) was developed for use in identifying health and vigor in vegetation, as well as estimates of 
green biomass. The NDVI, the normalized difference of brightness values from the near infrared and 
visible red bands, has been found to be highly correlated with crown closure, leaf area index, and other 
vegetation parameters (Tucker, 1979; Sellers, 1985; Singh, 1986; Running et al., 1986). Lyon et al. 
(1998) compared seven vegetation indices to detect land cover change in a Chiapas, Mexico study site. 
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They reported that the NDVI was least affected by topographic factors and was the only index that 
showed histograms with normal distributions. Change in canopy cover or vegetation biomass can be 
detected by analyzing NDVI values from separate dates (e.g. NDVI image differencing).  

Sader and Winne (1992) developed a technique to visualize change using three dates of NDVI 
imagery concurrently and interpretation concepts of color additive theory. By simultaneously 
projecting each date of NDVI through the red, green, and blue (RGB) computer display write 
functions, major changes in NDVI (and hence green biomass) between dates will appear in 
combinations of the primary (RGB) or complimentary (yellow, magenta, cyan) colors. Knowing which 
date of NDVI is coupled with each display color, the analyst can visually interpret the magnitude and 
direction of biomass changes in the study area over the three dates. Automated classification can be 
performed on three or more dates of NDVI by unsupervised cluster analysis (Sader et al., In Press). 
Change and no change categories are labeled and dated by interpreter analysis of the cluster statistical 
data and guided by visual interpretation of RGB-NDVI color composites. 

Study Area and Background 

Spanning approximately 2 million hectares of northern Guatemala, the Maya Biosphere 
Reserve (MBR) is an area of lowland tropical forests and expansive freshwater wetlands, part of the 
largest contiguous tropical moist forest remaining in Central America (Nations et al., 1998). The MBR 
is a complex of delineated management units including five national parks, four biological reserves 
(biotopos), a multiple use zone, and a buffer zone (Figure 1). The once remote and inaccessible forests 
of the region have experienced high rates of deforestation in the last decade, corresponding to human 
migration and expansion of the agricultural frontier (Sader et al., 1997).  

Sader and colleagues (Sader et al., 1997; and Sader et al., In Press) have monitored rates and 
trends of forest clearing using Landsat Thematic Mapper (TM) imagery from the mid-1980’s to late 
1990’s. Guatemalan government agencies and non-governmental organizations (NGOs) rely on 
regularly updated maps of the MBR to monitor deforestation patterns and disturbance in sensitive areas 
of the reserve. International donor agencies require the NGOs to quantify forest clearing rates at two-
year intervals. Accurate and efficient techniques for extracting quantitative forest change data from 
remotely sensed images are needed to support the MBR forest monitoring program. Furthermore, this 
data is needed for analysis with community level socio-economic survey data concerning the driving 
forces of environmental change in the MBR (Schwartz, 1998; Hayes, 1999). 

This paper describes the techniques used to process and validate multi-temporal Landsat TM 
imagery (3 dates) for obtaining time-series forest clearing and regrowth data in the MBR. Three 
change detection methods are compared: NDVI image differencing, PCA change detection, and RGB-
NDVI classification. A visual interpretation technique to generate reference points from color 
composite Landsat images, for selecting Kappa-optimizing thresholds and for assessment of 
classification accuracy, is described. The goal is to determine the most accurate and efficient method to 
detect forest change in the MBR’s tropical moist forest and to facilitate the transfer of this technology 
to the local NGOs. 
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Figure 1 

Methods 

Data Acquisition and Pre-processing 

 Three dates of Landsat TM imagery (1993, 95, 97) for WorldWide Reference System path 20, 
row 48 were acquired. This Landsat scene comprises approximately 90% of the MBR and buffer zone 
(Figure 1). To reduce scene-to-scene variation due to sun angle, soil moisture, atmospheric condition, 
and vegetation phenology differences, all data were collected between the months of March and May, 
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corresponding to the MBR’s dry season. Each scene was georeferenced to a previously rectified 1995 
TM image. TM bands 3 (visible red), 4 (near infrared), and 5 (mid-infrared) were extracted from the 
original TM data sets to reduce between-band correlation, data volume, and processing time. Previous 
studies have shown that selecting one band each from the visible, near infrared, and mid-infrared 
spectral regions results in the optimal waveband combination for vegetation discrimination (DeGloria, 
1984; Horler and Ahern, 1986; Sader, 1989). Bands 3, 4, and 5 were input into “isodata” (ERDAS, 
1997), an unsupervised classification module, to produce 200 spectral clusters. Binary images were 
created to isolate water, clouds, and cloud shadows through a combination of analyst definition of 
cloud/water clusters and on-screen editing. A previously developed image of non-forested wetlands 
and natural savannas was also added to the cloud and water image. These classes, being of no interest 
to forest clearing and regrowth analysis, were masked for all dates of imagery to avoid confusion in the 
change detection classification.  

Radiometric Normalization 

A relative radiometric calibration technique was applied to each band from each date of 
imagery. The technique incorporated linear regression methods reported by Eckhardt et al. (1990), Hall 
et al. (1991), and Jensen et al. (1995). The 1997 TM scene, which was corrected for sensor gain and 
bias, was used as the reference image to which the 1993 and 1995 data were normalized. First, 
normalization targets were selected from the wet (e.g. deep, clear water) and dry (e.g. urban features) 
non-vegetated extremes of each band (TM 3, 4, and 5) at each date (1993, 95, 97) by visual 
interpretation of the imagery and querying the digital numbers of pixels representing these features. 
The selection criteria were based on procedures outlined by Eckhardt et al. (1990). Each target 
consisted of an analyst-defined area of interest (AOI), which included the greatest number of pixels 
covering the target, whose digital numbers (DNs) were located at the extremes of the image histogram 
and collectively contained low variance.  

The mean value of the pixel DNs was generated for each of the normalization target AOIs 
(each band, each date). The parameters used in the linear regression equation were calculated by the 
following “rectification transform” (from Hall et al., 1991): 

DsBs
DrBrm

−
−=   and 

DsBs
DsBrDrBsb

−
−=      (Eq. 1), 

where:  Br = the mean DN for the bright target of the reference image; 
 Bs = the mean DN for the bright target of the subject image; 
 Dr = the mean DN for the dark target of the reference image; and  
  Ds = the mean DN for the dark target of the subject image. 

Using linear regression, the corrected pixel values for the subject image (Y) were calculated from the 
original DN (X), for each band (i), by the following equation:  

Yi = miXi + bi          (Eq. 2). 

Change Detection Methods 

 Three change detection methods (NDVI differencing, PCA, RGB-NDVI classification) were 
independently applied to the cloud / water masked and radiometrically normalized time-series TM data 
set. A three-date forest change detection classification of the selected study area was generated from 
each method. Each method was evaluated and compared with the other methods on its ability to 
classify temporal states in forest cover (i.e. cleared, regrown, no change) over the three time periods. 
The methods were evaluated and contrasted on the basis of classification accuracy (Congalton, 1991), 
efficiency in computation and processing, and ease in interpretation.  
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NDVI image differencing 

 Difference images were created by first calculating NDVI values for each date (j) of imagery 
by the following equation:  

)34(
)34([j]

TMTM
TMTMNDVI

+
−=         (Eq. 3). 

Two difference images were created by subtracting one date of NDVI values from those of the 
previous date, so that:  

]93[]95[]9395[ NDVINDVIDIF −=  and ]95[]97[]9597[ NDVINDVIDIF −=  (Eq. 4). 

Principal component analysis 

 The principal component transformation was performed separately on two data sets (1993 and 
1995, 1995 and 1997) using three TM bands (3, 4, and 5) for each date. Each two-date data set 
contained six bands. The transformation used the “prince” routine (ERDAS 1997), modified to 
calculate the transform from a correlation matrix of the data set. Several authors have compared this 
“standardized” approach to PCA against transformations based on the covariance matrix (Conese et 
al., 1988; Eastman and Falk, 1993; Rencher 1995). Reported advantages of the standardized approach 
include improved interpretability, the isolation of seasonal effects and variability due to noise, better 
statistical control, and more precise classification. For each data set, the “standardized” PCA routine 
output included six component images, a table of eigenvalues quantifying the proportion of variance 
explained by each component, and a matrix of eigenvectors (weights or factor loadings) depicting 
between-date correlation for each band with each component. Components that represent change 
typically show an absence of correlation among bands between dates (Byrne et al., 1980). The 
component that best highlights the change of interest is chosen for thresholding, using visual 
interpretation of component images and analysis of the eigenvector matrix.  

Image interpretation was based on the assessment of spatial continuity, by seeking out the 
components that express the differences in the changes of interest as spatially discontinuous areas 
within the image. The eigenvector analysis examined the algebraic signs on the weights. Differences 
between dates are expressed by the weight of one band at one date having an opposite sign as the same 
band of the other date. Based on these criteria, two of the six components (components 3 and 4 for 
each 2-date data set) were selected from the PCA for thresholding of no change and change areas. Of 
these two components, the one that showed the highest ability to threshold forest clearing / no change / 
regrowth (i.e. the highest estimated Kappa according to the reference sample points) was chosen for 
final classification. 

RGB-NDVI classification 

 NDVI values from three dates (as calculated by Eq. 3) were classified into 50 spectral clusters. 
For each cluster class, the mean NDVI values at each date (1993, 1995, 1997) were categorized as very 
high, high, medium-high, medium, medium-low, low, or very low, based on the distribution of NDVI 
values over the study area. These levels of NDVI were established on the observation that, as most of 
the study area is composed of undisturbed forest, values within ±0.5 standard deviations from the mean 
represented high green biomass (high mean NDVI). The other NDVI levels were set at intervals of 0.5 
standard deviations outward from the mean. Each cluster was examined for changes in NDVI levels 
over time. Clusters were named according to type of change (clearing, regrowth, or no change) and the 
corresponding time period(s) of change according to the NDVI levels as they related to three-date 
RGB-NDVI interpretation (Plate 1). 
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Computer Display 
Image Color 

RED 
1993 NDVI 

GREEN 
1995 NDVI 

BLUE 
1997 NDVI 

Interpretation relative to 
Forest canopy changes 

low low high Cleared before 93, 
regrow 95-97 

low high high Cleared before 93, 
regrow 93-97 

low high low Cleared before 93, 
regrow 93-95, cleared 95-
97 

high low low Cleared before 93-95, 
regrow 95-97 

high low high Cleared before 93-95, 
regrow 95-97 

high high low Cleared before 95-97 

high high high No change, 
high NDVI forest 

 low low low No change, low NDVI 
urban, pasture, other 

 
Plate 1 
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Classifying  the Change Images 

Both the NDVI differencing and the PCA methods result in images with an 8-bit (0-255) data 
range. Thresholds must be identified along the histograms to separate change (both clearing and 
regrowth) from no change. Threshold levels were set quantitatively according to the optimal estimated 
Kappa coefficient, based on an error matrix of image data against known reference data (Fung and 
LeDrew, 1988).  

Cohen et al. (1998) selected a random sample of points from a classified image and displayed 
them on each date of raw TM, RGB color composite imagery. Each point was then labeled as change 
(clearcut harvest) or no change by visual interpretation of the images, and used as the reference for 
accuracy assessment. They found the resulting error matrix to be not significantly different than one 
prepared with an independent vector database derived from aerial photography interpretation and 
ground truth methods. 

For each change image, an error matrix was developed using a sample of visually interpreted points as 
reference against the values of the change image. To assure an adequate distribution of sample points 
to each change class, each 8-bit (0-255) change image was recoded into 32 classes with each class 
corresponding to 8 original digital values (0-7, 8-15, … , 248-255). This 32-class temporary file was 
then used to generate a stratified random sample of points to be interpreted for use as reference in the 
thresholding procedure. A 3x3 moving window was used to select sample points in which all the 
surrounding pixels were of the same class (9 out of 9 majority), thus avoiding edge effects in 
interpretation. Five sample points were generated from each of the 32 classes in the temporary file 
(n=160). 

In the absence of existing historical reference data for the study area, the visual interpretation 
method reported by Cohen et al. (1998) was the only option for developing reference data for error 
matrices. Prior to visual satellite image interpretation, examples of newly cleared forest and recent 
forest regrowth were located on aerial photos and video frames available for a portion of the MBR 
study area in 1997. These sites were then examined on the 1993, 95, and 97 TM color composites 
(RGB 453) in order to train or “calibrate” the interpreter to the visual appearance of forest clearing and 
regrowth sites on the satellite imagery (Plate 2). 
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Plate 2 

Table 1.  

Cleared Vs. Not Cleared 

 Reference Data 

Classified Data Cleared Not cleared Row Total 

Cleared 41 6 47 

Not cleared 8 105 113 

Column Total 49 111 160 

Overall Accuracy = 91.3% KHAT = 0.79
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Not regrown vs. Regrown 

 Reference Data 

Classified Data Not regrown Regrown Row Total 

Not regrown 127 6 133 

Regrown 4 23 27 

Column Total 131 29 160 

Overall Accuracy = 93.8% KHAT = 0.78

Overall agreement 

 Reference Data 

Classified Data Cleared No change Regrown Row Total 

Cleared 41 6 0 47 

No change 8 72 6 86 

Regrown 0 4 23 27 

Column Total 49 82 29 160 

Overall Accuracy = 85.0% KHAT = 0.75

The three-date RGB-NDVI method used an unsupervised clustering routine rather than a 
thresholding technique to classify forest clearing, regrowth, and no change areas between image dates.  
However, the reference data developed for thresholding the change images was used to help name the 
spectral clusters. A matrix was developed to show agreement between the named RGB-NDVI clusters 
and visually interpreted sample points. Clusters that represented change, or showed confusion between 
known change and no change, were subset from the total cluster set. The remaining clusters (about half 
of the original 50) represented more subtle variation in NDVI levels of the forest canopy, not changes 
resulting from clearing or regrowth. These clusters were classified as “no change” while change and 
confusion clusters were reclassified from the original NDVI data into 50 new clusters. Jensen (1996) 
referred to this technique as “cluster busting”. By separating no change forest from the clusters of 
significant change, it was expected that the discrimination of forest change and dates of occurrence 
would be improved. This was indeed the case, as the 50 new clusters were again compared with 
reference data and showed less confusion between clearing, regrowth, and no change classes. Using 
the cluster signature statistics and additive color theory interpretation of the raw RGB-NDVI image 
(Plate 1), these new clusters were categorized according to the type and time period of change. This 
image was then recombined with the no-change forest class from the first iteration to produce the final 
RGB-NDVI change detection classification. 
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Accuracy Assessment  

 Error matrices were developed to evaluate the ability of each method to discriminate between 
forest clearing, vegetation regrowth, and no change, for each time period of the analysis. Because the 
time-series analysis covered three dates, each two-date change detection classification from the NDVI 
differencing and PCA methods were combined into a three-date change detection classification 
covering 1993, 95, and 97 (Table 2). The RGB-NDVI produced a three-date change image directly 
through unsupervised classification.  

TABLE 2.  

1 Cleared before 1993, regrowth 1995-97 

2 Cleared before 1993, regrowth 1993-97 

3 Cleared before 1993, regrowth 1993-95, cleared 1995-97 

4 Cleared 1993-95, no regrowth 

5 Cleared 1993-95, regrowth 1995-97 

6 Cleared 1995-97 

7 No change 

The results of the change detection methods were evaluated against a stratified random sample 
of reference points, using an error matrix constructed for each method. Visual interpretation of each 
date of color composite imagery, for each sample, was used to create the reference data (Plate 2). The 
seven change detection classes (Table2) were used to stratify the sample points. Selected sample points 
were limited to cases in which all pixels in a 3 x 3 window were of the same class (9 out of 9 majority). 
This was done to simplify visual interpretation and avoid edge effects. Ten samples were selected from 
each change class for a sample size of 70 from each image. The sample points from the three images 
were pooled (3 x 70) for a total sample of 210 points. This sample was independent of the one used for 
thresholding the NDVI difference and PCA change images and naming the three-date RGB-NDVI 
unsupervised clusters.  

Producer’s and user’s accuracy were calculated for each change class, along with the overall 
accuracy, estimated Kappa, and Z-statistic for each classification. The error matrices of the three 
methods were compared for statistical differences by pair-wise comparison of the Z-statistics 
(Congalton and Green, 1999).  

Results 

 The correlation and eigenvector matrices are shown in Tables 3a (for the 1993 to 1995 change 
image) and 3b (for the 1995 to 1997 change image). For both 2-date change transformations, the first 
component contained over 50% of the variation among the 6 bands (54.10% for 95-97 and 53.21% for 
93-95). The first two components represented 79.15% of the variation in the 95-97 data set, and 
76.02% of the variation in the 93-95 set. Visual analysis of the images corresponding to these 
components suggested that this variation could be attributed to atmospheric, seasonal, and other 
differences evenly distributed over all pixels.  
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TABLE 3A.  

PCA [9395] Correlation Matrix 

Bands 93tm3 93tm4 93tm5 95tm3 95tm4 95tm5 

93tm3 1.0000 -0.4920 0.7225 0.6708 -0.1713 0.5637 

93tm4 -0.4920 1.0000 -0.2090 -0.2860 0.4058 -0.1106 

93tm5 0.7225 -0.2090 1.0000 0.5695 0.0180 0.7243 

95tm3 0.6708 -0.2860 0.5695 1.0000 -0.2938 0.7648 

95tm4 -0.1713 0.4058 0.0180 -0.2938 1.0000 0.0284 

95tm5 0.5637 -0.1106 0.7243 0.7648 0.0284 1.0000 

PCA [9395] Eigenvector Matrix (from Correlation Matrix) 

 Component 

Bands 1 2 3 4 5 6 

93tm3 0.4919 -0.0526 0.3171 -0.2605 0.6394 0.4219 

93tm4 -0.2679 0.5779 -0.5726 -0.4009 0.3100 0.0975 

93tm5 0.4651 0.2661 0.1826 -0.5920 -0.3901 -0.4206 

95tm3 0.4863 0.0055 -0.4094 0.4111 0.3576 -0.5468 

95tm4 -0.1434 0.6938 0.5547 0.3810 0.1481 -0.1525 

95tm5 0.4614 0.3332 -0.2509 0.3267 -0.4394 0.5598 

Eigenvalue 0.2703 0.1159 0.0587 0.0313 0.0228 0.009 

% of Variation 53.21% 22.81% 11.56% 6.16% 4.49% 1.77% 
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TABLE 3B.  

PCA [9597] Correlation Matrix 

Bands 95tm3 95tm4 95tm5 97tm3 97tm4 97tm5 

95tm3 1.0000 -0.2938 0.7648 0.6686 -0.2538 0.5897 

95tm4 -0.2938 1.0000 0.0283 -0.2048 0.5866 -0.0318 

95tm5 0.7648 0.0283 1.0000 0.5937 0.1313 0.7242 

97tm3 0.6686 -0.2048 0.5937 1.0000 -0.3611 0.8261 

97tm4 -0.2538 0.5866 -0.1313 -0.3611 1.0000 -0.1791 

97tm5 0.5897 -0.0318 0.7242 0.8261 -0.1791 1.0000 

PCA[9597] Eigenvector Matrix (from Correlation Matrix) 

 Component 

Bands 1 2 3 4 5 6 

95tm3 0.4785 0.0283 -0.5807 -0.0207 -0.4939 0.4343 

95tm4 -0.1720 0.6939 0.3308 -0.4724 -0.3670 0.1468 

95tm5 0.4592 0.2870 -0.3126 -0.4452 0.4276 -0.4775 

97tm3 0.4939 0.0290 0.4066 0.3465 -0.4596 -0.5085 

97tm4 -0.2432 0.6176 -0.3664 0.6320 0.0827 -0.1380 

97tm5 0.4770 0.2304 0.3950 0.2423 0.4695 0.5331 

Eigenvalue 0.2566 0.1188 0.0435 0.0313 0.0177 0.0064 

% of Variation 54.10% 25.05% 9.17% 6.60% 3.73% 1.35% 

Information on the type of change represented by each component can be inferred partly by 
examination of the algebraic signs on the eigenvectors corresponding to each band at each date (Table 
3a and b). For example, no clear pattern existed in eigenvectors between dates for the first and second 
component of both change images (PCA[9395] and PCA[9597]). These components were deemed to 
represent overall variation across all pixels in the study area, in agreement with the findings of Byrne 
et al. (1980) and Fung and LeDrew (1987; 1988). A pattern in the eigenvectors was apparent, however, 
for component 3. In addition, clearing areas were found to be spectrally distinct from surrounding 
forest in the component 3 images. The differences between bands 3 and 4 in both component 3 images 
and the relationship of band 3 to 4 in the NDVI indicates a change in “greenness”. A pattern was also 
apparent in component 4 for both change images. The differences between all bands in the component 
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4 images were reasoned to represent changes in overall “brightness”. Patterns of change in 
eigenvectors were also discovered in components 5 and 6 for each change image. It was concluded 
however, from evaluation of the corresponding single component imagery, that this variation was 
likely attributable to factors such as seasonal vegetation variations and soil moisture changes between 
dates and not forest changes. Components 3 and 4 for both time periods showed the best spatial 
discontinuity in the change areas of interest and were chosen for thresholding. 

Kappa Optimization for Thresholding Change Images 

 The optimal thresholds for detecting both forest clearing and vegetation regrowth were 
determined for each two-date NDVI differenced image, and for components 3 and 4 for each time 
period in the PCA analysis (Table 4). Overall Kappa was considerably higher for component 3 in both 
time periods (0.72 for 1995-97, and 0.73 for 1993-95) than for component 4 (0.58 and 0.55, 
respectively). Given the higher Kappa values for clearing and regrowth, component 3 was chosen over 
component 4 for the PCA change detection classification and subsequent accuracy assessment. The 
overall Kappa for the NDVI difference image classification of clearing, no change, and regrowth was 
0.78 for DIF[9395] and 0.76 for DIF[9597]. These Kappas were higher than the thresholded principal 
component images at each time period.  

TABLE 4. 

Clearing Change 

Image DIF[9395] DIF[9597] PC3[9597] PC4[9597] PC3[9395] PC4[9395] 

Mean 99.7 128.7 49.1 107.8 54.3 70.8 

std.dev 18.2 16.9 5.4 5.6 6.3 5.0 

Threshold < 44 < 76 > 121 > 137 < 85 > 118 

Clearing Kappa 0.77 0.79 0.69 0.61 0.71 0.59 

Regrowth Threshold > 183 > 163 < 108 < 109 > 124 < 101 

Regrowth Kappa 0.77 0.78 0.79 0.57 0.79 0.55 

Overall Kappa 0.78 0.75 0.72 0.58 0.73 0.55 

Accuracy Assessment and Comparison of Methods 

 The two-date thresholded images for each method were combined into three-date images 
(NDVI-DIFF and PCA) to facilitate comparison with the three-date RGB-NDVI classification (Table 
5). User’s (U) and producer’s (P) accuracy were calculated for each of the 7 classes from each method. 
Overall accuracy, the percentage of pixels classified as “correct” among those sampled, was highest 
with the RGB-NDVI method (85%) followed by the NDVI-DIFF (82%) and PCA (74%) 
classifications. Thus, the RGB-NDVI classification resulted in the highest Kappa (0.83), followed by 
the NDVI-DIFF method (0.79) and PCA method (0.69). The Z-stat was calculated for each matrix and 
compared to the normal distribution to test if the Kappa of an individual error matrix was significantly 
different from random. The high Z-stat values for each method indicated that all were significant at the 
95% level of confidence. A test statistic (Z) was calculated based on the Kappa (Ki) values and Kappa 
variance (var(Ki)) of two separate error matrices (i). This value tested for significant difference 
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between the results of two error matrices (Congalton and Green, 1999). The Z test statistic comparing 
the NDVI-DIFF and PCA methods (1.89) was slightly less than the critical Z value (1.96) for an alpha 
of 0.05, thus indicating no significant difference between these methods. There was also no significant 
difference between the Z test statistic comparing the RGB-NDVI and NDVI-DIFF methods (0.93) and 
the normal distribution. There was a significant difference between the RGB-NDVI and PCA methods 
(P< 0.05, Z=2.83). 

TABLE 5.  

Error Matrix for NDVI-DIFF Method 

 Reference Data 

Classified 
Data 1 2 3 4 5 6 7 Row Total 

1 7 0 0 0 2 0 3 12 

2 4 29 1 0 0 0 2 36 

3 0 0 21 0 0 0 2 23 

4 0 0 0 27 1 0 0 28 

5 0 0 0 5 24 0 2 31 

6 0 0 1 0 0 24 4 29 

7 3 2 1 1 1 2 36 46 

Column 
Total 14 31 24 33 28 26 49 205 
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Error Matrix for PCA Method 

 Reference Data 

Classified 
Data 1 2 3 4 5 6 7 Row Total 

1 4 1 0 0 3 0 8 16 

2 3 25 1 0 1 0 3 33 

3 0 4 23 0 0 0 1 28 

4 0 0 0 22 2 0 0 24 

5 1 0 0 8 22 0 0 31 

6 0 0 0 0 0 25 6 31 

7 6 1 0 3 0 1 31 42 

Column 
Total 14 31 24 33 28 26 49 205 

 
Error Matrix for RGB-NDVI Method 

 Reference Data 

Classified 
Data 1 2 3 4 5 6 7 Row Total 

1 12 3 0 0 1 0 2 18 

2 0 24 0 0 0 0 0 24 

3 0 0 24 0 0 0 5 29 

4 0 0 0 30 2 0 0 32 

5 0 0 0 1 22 0 2 25 

6 0 0 0 0 0 24 1 25 

7 2 4 0 2 3 2 39 52 

Column 
Total 14 31 24 33 28 26 49 205 
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 NDVI-DIFF PCA RGB-NDVI 

Forest Change Class U† P‡ U P U P 

1 cleared before 93 
regrowth 95-97 58.3% 50.0% 25.0% 28.6% 66.7% 85.7% 

2 cleared before 93 
regrowth 93-97 80.6% 93.6% 75.8% 80.7% 100.0% 77.4% 

3 
cleared before 93 
regrowth 93-95,  
cleared 95-97 

91.3% 87.5% 82.1% 95.8% 82.8% 100.0% 

4 cleared 93-95 
no regrowth 96.4% 81.8% 91.7% 66.7% 93.8% 90.9% 

5 cleared 93-95 
regrowth 95-97 77.4% 85.7% 71.0% 78.6% 88.0% 78.6% 

6 cleared 95-97 82.8% 92.3% 80.7% 96.2% 96.0% 92.3% 

7 no change 78.3% 73.5% 73.8% 63.3% 75.0% 79.6% 

Overall Accuracy 82.0% 74.2% 85.4% 

Kappa 0.79 0.69 0.83 

Z-stat 24.63* 19.32* 28.05* 

†User’s Accuracy; ‡Producer’s Accuray; 

Test Statistic (Z) for Pairwise Comparison of Two Error Matrices 

Matrices K1 Var(K1) K2 Var(K2) Z 

ndvi-diff vs. pc3 0.7857 0.0010 0.6946 0.0013 1.89 

ndvi-diff vs. rgb-ndvi 0.7857 0.0010 0.8262 0.0009 0.93 

pc3 vs. rgb-ndvi 0.6946 0.0013 0.8262 0.0009 2.83* 

*Significant at α=0.05 (Zcrit=1.96) 

Discussion 

 The objective of this study was to develop an accurate and efficient change detection method to 
extract land cover change information from a time-series satellite image database for the Maya 
Biosphere Reserve (Hayes 1999). The radiometric normalization technique proved easy to perform and 
practical, especially considering the lack of ancillary information (slope, aspect, sun angle, earth-sun 
distance, soil conditions, etc.) and in situ atmospheric data. The method used to generate reference data 
from the visual interpretation of TM color composite imagery (Cohen et al., 1998) was crucial in 
determining the appropriate change thresholds and in supporting accuracy assessment procedures, as 
no other reliable historical reference data was available for this remote and largely inaccessible study 
area. 
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The effective use of remote sensing as a tool for generating land cover information is highly 
dependent on the measurable quality of this information (Congalton and Green, 1999). The assessment 
of land cover or change detection classification accuracy measures the quality of a classification 
method, both on its own and in relation to other methods. In this study, the RGB-NDVI method was 
found to have the highest overall accuracy at 85.4%, which meets the level (85%) that the U.S. 
Geological Survey has recommended for acceptability of classification results (Anderson et al., 1976).  

The accuracy of the RGB-NDVI method was not significantly different from results obtained 
with the NDVI-DIFF method. These two methods used the same data (NDVI from each date) so it was 
not surprising that they resulted in similar classifications. The RGB-NDVI method relied on 
unsupervised classification (three dates at a time) and analyst identification of clusters thus avoiding 
the difficulties in selecting appropriate thresholds between change and no change values. NDVI image 
differencing is mathematically simple and easy to interpret, but it still relies on thresholding for change 
classification. The Kappa maximizing decision rule was preferred over more subjective thresholding 
decisions. In contrast to thresholding, the grouping of pixel clusters of similar spectral characteristics 
based on a maximum likelihood criterion in combination with visual image interpretation proved to be 
a more efficient way to identify areas of clearing and regrowth between dates of imagery.  

The RGB-NDVI used a different band subset and a different classification technique than the 
PCA method, and the results were significantly different. It was interesting to find that both NDVI 
methods, which used information from TM bands 3 and 4, outperformed the PCA method, which 
incorporated TM band 5. It is possible, however, that the added information from TM 5 may have been 
lost by choosing a single PCA change component. Some variation explained by changes of interest 
may have been located in components 4 and 5, and therefore not included after component 3 was 
selected for thresholding. Furthermore, the algebraic signs on the eigenvectors can be interpreted in 
terms of “greenness” and “brightness” changes, but this is subjective and not based on standard 
correlation, such as that associated with the NDVI. Therefore, the interpretation and thresholding of 
PCA change imagery can be more complicated than NDVI differencing or RGB-NDVI classification.  

In addition to achieving a satisfactory level of accuracy, it was desired that the change detection 
method could be easily transferable to local government agencies and NGOs working in the region. 
These NGOs are responsible for updating change detection maps to support conservation-based 
decision making by local participants. The RGB-NDVI method was considered to be the most 
effective of change detection methods examined in this study for two primary reasons.  

First, the RGB-NDVI method allowed interpretation and classification of forest changes for 
three dates at a time. The other methods required thresholding change and no change two dates at a 
time. Analysis of three or more dates allows trends to be examined at more than one interval of time. 
For example, seven dates of satellite imagery have been acquired and processed thus far in MBR 
monitoring project (Hayes 1999).  Processing three dates at a time, the RGB-NDVI method classified 
change in three steps while the other methods would need six steps to perform the same classification.  

Second, additional information can be interpreted from a three-date RGB-NDVI unsupervised 
classification than from the thresholding of two-date change images. With thresholding, only clearing, 
no change, and regrowth can be interpreted between two dates. The naming of RGB-NDVI clusters, 
based on NDVI values at each date and their variations between dates, can take into account temporal 
interpretation about the “from” and “to” identifiers of change. For example, the RGB-NDVI method 
allows delineation of low to high NDVI areas of no change (relative green biomass levels). This 
information can be important in land use identification when combined in a time series (e.g. the 
delineation of persistent agriculture or pasture from early regenerating fallowed land, and relatively 
undisturbed forest). 
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Conclusions 

We have compared three change detection methods (NDVI differencing, PCA change 
detection, and RGB-NDVI classification) for monitoring time-series change in a tropical moist forest. 
The objective was to identify the method that most accurately and efficiently extracted forest change 
information from Landsat TM imagery of the MBR. By validating and comparing these methods, we 
intended to justify the use of a standard method for the continued study of forest change in the region. 
The RGB-NDVI method is recommended for its high level of accuracy, its ease in interpretation, and 
its utility in technology transfer to local NGOs and government agencies for future land cover and land 
use monitoring.  

The accuracy assessment resulted in a measure of the quality of the change information. Such 
measures are vital when important natural resource decisions are based on satellite-derived 
information, as is the case with the forest-monitoring program in the MBR. The change detection maps 
are used to support ecological research and socio-economic studies of the driving forces and 
environmental consequences of land cover and land use change in the region. Kristensen et al. (1997) 
claimed that the forest change detection mapping of the MBR from satellite imagery was considered 
the “most powerful monitoring tool” for Conservation International, local government agencies and 
other NGOs working in the region. The continued monitoring of forest clearing in the MBR (Sader et 
al., In Press) relies on accurate and efficient techniques, as developed and tested in this study, for 
extracting quantitative forest change data from remotely sensed images.  
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List of Figures and Color Plates 
 
Figure 1. Location of the study area (Landsat WRS Path 20/Row 48, 1997 TM band 5  

shown) in relation to the management units of the Maya Biosphere Reserve, El  
Petén, Guatemala. 

 
Plate 1. Simplified interpretation of three-date RGB-NDVI color composite imagery  

(top) according to color additive theory (bottom). 
 
Plate 2. Example of the visual interpretation of Landsat TM RGB 453 color  

composites for developing reference sample points.  Air photos and other  
ancillary information, where available, can be used for interpreter training.  
Change classes noted are as follows:  
A. Cleared between 93-95, no regrowth 
B. Cleared between 93-95, regrowth 95-97 
C. Cleared between 95-97 
D. No change (high biomass) 
E. No change (low biomass) 


